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Mass measurements and the bound-electron g factor
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Abstract

The accurate determination of atomic masses and the high-precision measurement of the bound-electron g factor are prerequisites for the
determination of the electron mass, which is one of the fundamental constants of nature. In the 2002 CODATA adjustment [P.J. Mohr, B.N. Taylor,

Rev. Mod. Phys. 77 (2005) 1], the values of the electron mass and the electron–proton mass ratio are mainly based on g factor measurements in
combination with atomic mass measurements. In this paper, we briefly discuss the prospects for obtaining other fundamental information from
bound-electron g factor measurements, we present some details of a recent investigation of two-loop binding corrections to the g factor, and we
also investigate the radiative corrections in the limit of highly excited Rydberg S states with a long lifetime, where the g factor might be explored
using a double resonance experiment.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The central equation for the determination of the electron
mass me from g factor measurements reads

me = ωc

ωL

g|e|
2q

mion, (1)

where ωc is the cyclotron frequency of the ion; ωL, the Larmor
spin precession frequency; q, the ion charge; and mion its mass.
The quantity e = −|e| is the elementary charge, and g is the
bound-electron g factor. In most practical applications, the ion is
hydrogen like, and the frequency ratio ωc/ωL can be determined
very accurately in a Penning trap [1,2].

Eq. (1) may now be interpreted in different ways:
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• The ratio me/mion is immediately accessible, provided we
assume that quantum electrodynamic theory holds for g.
Provided the ratio mion/mp (with the proton mass mp) is
also available to sufficient accuracy, the electron to pro-
ton mass ratio me/mp can be determined by multiplication
me/mion × mion/mp. In the recent CODATA adjustment [3],
the ratio me/mp has been determined using two measure-
ments involving 12C.

• Let us suppose that mion is known to sufficient accuracy. As-
suming that quantum electrodynamic theory holds for g, we
may then determine me from the measurement [4–6].

• The g factor depends on the reduced mass of the electron-
ion two-particle system. An accurate measurement of g can
therefore yield an independent verification of the isotopic
nuclear mass difference, provided that the masses of the ions
have been determined beforehand to sufficient accuracy [7].

• Direct access to the electron g factor in a weak external mag-
netic field depends on the property of the nucleus having zero
spin. According to a relatively recent proposal [8,9], the mea-
surement of a g factor for a nucleus with non-zero spin can
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be used to infer the nuclear g factor, provided the purely elec-
tronic part of the g factor is known to sufficient accuracy from
other measurements.

• There is also a proposal for measuring g factors in lithium-
like systems, and theoretical work in this direction has been
undertaken [10]. Provided the contribution due to electron–
electron correlation can be tackled to sufficient accuracy, a
measurement of the g factor in lithiumlike systems could give
access to the nuclear-size effect, which in turn can be used as
an additional input for other determinations of fundamental
constants.

• Finally, provided the mass mion of a high-Z ion is known to
sufficient accuracy and me is taken from g factor measure-
ments at lower nuclear charge number, the high-Z experimen-
tal result for g may be compared to a theoretical prediction,
yielding a test of quantum electrodynamics for a bound parti-
cle subject to an external magnetic field and a strong Coulomb
field.1 Alternatively, one may invert the relation g = g(α) to
solve for the fine-structure constant (important precondition:
knowledge of nuclear size effect) [8,11]. The feasibility of the
latter endeavour in various ranges of nuclear charge numbers
will be discussed in the current article.

These examples illustrate the rich physics implied by g factor

Recent measurements for the hydrogenlike ions 24Mg11+ and
26Mg11+ (Ref. [13]) and 40Ca19+ (Ref. [17]),2 as well as for the
lithiumlike ion 40Ca17+ (Ref. [17])2 have reached an accuracy
of about 5 × 10−10. These experiments pave the way for ac-
curate determinations of fundamental constants using g factor
measurements in these systems. At the University of Mainz3

(MATS collaboration) and at the University of Stockholm [17]2

(SMILE-TRAP), there are plans to significantly extend and en-
hance atomic mass measurements (including many more iso-
topes and nuclei) over the next few years, with accuracies below
1 part in 1011 or even 1012. Eventually, one may even hope to
determine the nuclear size effect of a specific ion by “weighing”
the Lamb shift of the ground state. In the same context, one may
point out that the masses of different charge states of ions are
determined vice versa by adding and subtracting binding ener-
gies. This implies, e.g., that the mass of 12C5+ in terms of the
mass of neutral carbon, m(12C) = 12 U, is given by

m(12C5+) = m(12C) − 5 me + c−2EB, (2)

where EB = 579.835(1) × 10−9 U, c2 is the cumulative binding
energy for all five electrons [18]. This relation has proven useful
in the determination of the electron mass [7].

In order to make a comparison to the accuracy of the free-
electron determination of α, it is perhaps useful to remember
measurements in combination with the determination of atomic

masses via Penning traps. Indeed, the g factor is a tremendous
source of information regarding fundamental constants, funda-
mental interactions and nuclear properties.

This paper is organized as follows. In Section 2, we briefly
discuss the importance and the status of atomic mass measure-
ments for further advances. In Section 3, we describe a few
details of two recent investigations [5,6] regarding one- and
two-loop binding corrections to the g factor, and in Section 4,
we discuss the asymptotics of the corrections for high quan-
tum numbers, with a partially surprising result, before dwelling
on connections of the g factor to nuclear effects and the fine-
structure constant in Section 5. Conclusions are drawn in Sec-
tion 6. An Appendix A is devoted to the current status of the
free-electron anomaly.

2. Atomic mass measurements—present and future

A review of the current status of atomic mass measurements
can be in found in ref. [12]. Experimental details regarding mod-
ern atomic mass measurements, with a special emphasis on hy-
drogenlike ions, can be found in refs. [13,14]. Regarding the
current status of mass measurements, one may point out that
some of the masses of S, Kr and Xe ions have recently been
determined with an accuracy of better than 1 part in 1010 (Ref.
[15]). For molecular ions, the accuracy has recently been pushed
below 10−11 [16].

1 See, e.g., Section 2.2 of P.D. Fainstein, et al., Stored Particle Atomic Research
Collaboration (SPARC), Letter of Intent for Atomic Physics Experiments and
Installations at the International FAIR Facility, 2004, unpublished.
that in the seminal work [19], the free-electron and positron
anomaly has been determined to an accuracy 4 × 10−9. This
translates into a level of accuracy of about 4 × 10−12 for the g
factor itself. The accuracy of the current value of α is 4 × 10−9

[3].

3. Calculation of the bound-electron g factor

The bound-electron g factor measures the energy change of
a bound electron (hydrogenlike ion, spinless nucleus) under a
quantal change in the projection of the total angular momentum
with respect to an axis defined by a (weak) external magnetic
field. In this sense, the g factor of a bound electron should rather
be termed the gJ factor (according to the Landé formulation).

However, for S states, the total angular momentum number
is equal to the spin quantum number, and therefore it has been
common terminology not to distinguish the notation for g and
gJ .

For a general hydrogenic state, the Dirac-theory g factor, de-
noted gD, reads (see [9] and references therein)

gD = κ

j(j + 1)

(
κ
Enκ

me
− 1

2

)
. (3)

Here, Enj is the Dirac energy, and the quantum numbers n, j
and κ have their usual meaning. Throughout this article, we use
natural units with � = c = ε0 = 1.

2 R. Schuch, Private communication, 2005.
3 K. Blaum, Private communication, 2005.
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For S, P and D states, Eq. (3) leads to the following expres-
sions (we here expand the bound-state energy in powers of Zα),

gD(nS1/2) = 2 − 2(Zα)2

3 n2 − (Zα)4

n3

(
2

3
− 1

2 n

)
, (4a)

gD(nP1/2) = 2

3
− 2(Zα)2

3 n2 − (Zα)4

n3

(
2

3
− 1

2 n

)
, (4b)

gD(nP3/2) = 4

3
− 8(Zα)2

15 n2 − (Zα)4

n3

(
4

15
− 2

5 n

)
, (4c)

gD(nD3/2) = 4

5
− 8(Zα)2

15 n2 − (Zα)4

n3

(
4

15
− 2

5 n

)
, (4d)

gD(nD5/2) = 6

5
− 18(Zα)2

35 n2 − (Zα)4

n3

(
6

35
− 27

70 n

)
. (4e)

The above formulas illustrate the in principle well-known
fact that the bound-electron g factor would be different from the
free-electron Dirac value g = 2, even for S states and even in
the absence of quantum electrodynamic loop corrections.

We now briefly summarize the results of recent investigations
[5,6] of the bound-electron g factor, which is based on nonrela-
tivistic quantum electrodynamics (NRQED). The central result
of this investigation is the following semi-analytic expansion in
powers of Zα and ln(Zα) for the bound-electron g factor (nS

1

2

(
1 + (Zα)2

6n2

)
+ (Zα)4

n3 {a41ln[(Zα)−2] + a40} + O(Zα)5
}

︷︷ ︸
one-loop correction

Zα)−2] + b40} + O(Zα)5
}
︸+O(α3). (5)

Table 1
A table of generalized Bethe logarithms ln k3(nS) for excited S states

n ln k3(nS)

1 3.272806545
2 3.546018666
3 3.881960979
4 4.178190961
5 4.433243558
6 4.654608237
7 4.849173615
8 5.022275220

This quantity enters into Eqs. (6b) and (7b) and characterize the one-loop binding
correction to the g factor of order α(Zα)4 and the two-loop correction of order
α2(Zα)4. All decimals shown are significant.

electron, which is usually quoted as (α/π)2(−0.328479) in the
literature.

Explicit results for the coefficients in (5), restricted to the
one-loop self-energy, read [5]

a41(nS) = 32

9
, (6a)

a40(nS) = 73

54
− 5

24n
− 8

9
ln k0(nS) − 8

3
ln k3(nS). (6b)

Here, ln k0(nS) is the Bethe logarithm for an nS state, and
ln k3(nS) is a generalization of the Bethe logarithm to a per-
turbative potential of the form 1/r3 (see also Table 1 below).
Vacuum polarization adds a further n-independent contribution
of (−16/15) to a40 [23]. Higher-order binding corrections to
the one-loop self-energy contribution to the g factor have been

considered, e.g., in [24], and for the vacuum-polarization con-
state) in the non-recoil and pointlike-nucleus limit (for recoil
effects see e.g., ref. [20]):

g(nS) = 2 − 2(Zα)2

3n2 + (Zα)4

n3

(
1

2n
− 2

3

)
+ O(Zα)6

︸ ︷︷ ︸
Breit (1928), Dirac theory

+ α

π

{
2 ×︸

+
(α

π

)2
{

−0.656958

(
1 + (Zα)2

6n2

)
+ (Zα)4

n3 {b41ln[(︸ ︷︷
two-loop correction

This expansion is valid through the order of two loops (terms of
order α3 are neglected). The notation is in part inspired by the
usual conventions for Lamb-shift coefficients [21]: the (lower
case) a terms denote the one-loop effects, with akj denoting the
coefficient of a term proportional to α(Zα)klnj[(Zα)−2]. The
b terms denote the two-loop corrections, with bkj multiplying
a term proportional to α2(Zα)klnj[(Zα)−2]. In [5,6], complete
results are derived for the coefficients a41, a40, b41 and b40, valid
for arbitrary excited S states in hydrogen like systems.

In Eq. (5), the term underlined by “Breit (1928), Dirac theory”
corresponds to the prediction of relativistic atomic theory, in-
cluding the relativistic corrections to the wave function [22]. By
contrast, the term α/π(2 × (1/2)) in the expression underlined
by “one-loop correction” gives just the leading (Schwinger)
correction to the anomalous magnetic moment of a free electron.
This latter effect is modified here by additional binding correc-

tions to the one-loop correction, which give rise e.g., to terms
of order α(Zα)2 and higher (in Zα). Perhaps, it is also worth
clarifying that the term −0.656958 is just twice the two-loop
contribution to the anomalous magnetic moment of a free

lated to the two-loop self-energy diagrams. An essential contri-
bution to the one- and two-loop effects is given by two-Coulomb-
vertex scattering amplitudes (see also Fig. 1).
tribution, one may consult, e.g., ref. [25].
The results for the two-loop coefficients read

b41(nS) = 28

9
, (7a)

b40(nS) = 258917

19440
− 4

9
ln k0 − 8

3
ln k3(nS) + 113

810
π2

− 379

90
π2 ln 2 + 379

60
ζ(3) + 1

n

(
− 985

1728
− 5

144
π2

+ 5

24
π2 ln 2 − 5

16
ζ(3)

)
. (7b)

Our result for b40 includes contributions from all two-loop ef-
fects (see Fig. 21 of [26] for the diagrams) up to the order
α2(Zα)4. The logarithmic term b41 is, however, exclusively re-
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Fig. 1. One-loop, two-vertex scattering diagrams that correspond to the one-loop part of the effective operators Eqs. (B16) and (B17) of ref. [6]. The zigzag line
denotes the interaction with the external field, whereas the dashed lines denote the Coulomb photons. The two-loop part of these effective operators is generated by
diagrams with one more virtual photon, with electron-photon vertices to be inserted at all topologically distinguishable positions in the electron lines of diagrams
(a)–(c).

4. Asymptotics for high quantum numbers

It is interesting to study the limit of the coefficients a40 and
b40 in the limit of highly excited states, n → ∞. For the Bethe
logarithm ln k0, such a study has recently been completed (see
refs. [27,28]). The asymptotics of the generalized Bethe loga-
rithm ln k3 have not yet been determined. We here supplement
the numerical result for 8S. In Eq. (72) of ref. [6], results have
been communicated for S states with n ≤ 7.

The result for n = 8 confirms the trend of a monotonic in-
crease of ln k3 with n (see Fig. 2). On the other hand, based on
the general experience regarding the structure of radiative cor-
rections in the limit n → ∞, we would expect a constant limit
of ln k3(nS) for n → ∞. Using an extrapolation scheme similar
to the one employed in [29], we conjecture the following limit
(see Fig. 3),

lim
n→∞ ln k3(nS) = 10 ± 2, (8)

It would be very interesting to verify this limit by an explicit
calculation, e.g., using the techniques outlined in ref. [27].

Highly excited Rydberg states are characterized by a long
lifetime. In a Penning trap, however, the confining electric fields
would tend to quench transitions to lower-lying levels. One
might attempt a measurement of a g factor of a Rydberg state

Fig. 3. A plot of the generalized Bethe logarithms ln k3(nS) as a function 1/n

instead of n indicates consistency with an asymptotic limit limn→∞ ln k3(nS) =
10 ± 2.

flip (Larmor precession frequency) and another being tuned to
a transition between Rydberg states.4

5. Bound-electron g factor, nuclear effects and the
fine-structure constant

In Figs. 4 and 5, we indicate three primary sources of the the-
oretical uncertainty of the bound-electron g factor across the en-
tire range of nuclear charge numbers (these are the fine-structure
constant, higher-order unknown two-loop effects and the nuclear
radius). For a determination of the fine-structure constant using
the bound-electron g factor, the experimental accuracy would
have to be improved to a value below the corresponding un-
certainty curve in Figs. 4 and 5. Such a determination would
constitute a very important and attractive additional pathway,
using bound-state quantum electrodynamics, as an alternative
to the “usual” determination based on the free-electron g factor.

Before we dwell further on the fine-structure constant, we
briefly discuss the nuclear polarizability correction to the g factor
(see ref. [30] and Appendix A) which represents an additional
obstacle in the determination of the fine-structure constant from
g factor measurements. One might hope that it can be accurately
understood one day in terms of nuclear models. In Appendix A,
we present an additional nuclear effect (a magnetic susceptibility

4 W. Quint, Private communication, 2005.
via a double-resonance approach, with one laser driving the spin

Fig. 2. A plot of the generalized Bethe logarithms ln k3(nS) as a function of the
principal quantum number n illustrates the monotonic increase with n. For the
numerical values, see Table 1.
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Fig. 4. Various sources of theoretical uncertainty for the bound-electron g factor, over the entire Z range from hydrogen to uranium.

correction) which may also have to be taken into account in an
accurate description of the nuclear contributions to the bound-
electron g factor, especially in the range of medium nuclear
charge numbers.

The further shift/uncertainty of the g factor, caused by the
nuclear finite-size effect (nuclear volume effect), is typically
smaller than the uncertainty of the theoretical prediction for the
g factor due to higher-order quantum electrodynamic two-loop
binding corrections (see Figs. 4 and 5). In evaluating the uncer-
tainty due to the nuclear radius, we have used the most recent
values for the root-mean-square (rms) nuclear radii [31].

In order to investigate the sensitivity of the bound-electron g
factor to the fine-structure constant, we approximate the g factor
by the first two terms in the Zα-expansion of the Dirac theory
and the one-loop correction, and obtain

δg ≈
{

−2

3
Z2α[2 + (Zα)2] + 1

π

[
1 + 1

2
(Zα)2

]}
δα. (9)

For a determination of α, it is desirable, in principle, to tune the
parameters so that the modulus |δg| for given δα becomes as
large as possible.

For nuclear charge numbers in the (fictitious) range 5 ≤ Z ≤
6, the sensitivity of g on α suffers from a cancellation of the
one-loop against the Dirac binding corrections (see also Figs. 4
and 5), and we have

δg

δα
≈ 0 for Z ≈ 5.7. (10)

It would be rather difficult to determine α via a measurement of
the g factor in the indicated range of nuclear charge numbers.

For large Z, one may find a crude approximation to Eq. (9)
by the relation

|δg|
δα

≈ 4

3
Z2 α ⇒ |δg|

g
≈ 2

3
(Zα)2 δα

α
. (11)

The enhancement of the theoretical uncertainty of g with Z is
manifest in Fig. 4. In principle, one might assume that a mea-
surement at high Z could be more favourable for a determination

tha
0B
Fig. 5. A close-up of Fig. 4 in the range of small quantum numbers n illustrates
theoretical status, would be possible for ionized helium (4He+) and beryllium (1
t an alternative determination of the fine-structure constant, based on the current
e+). The 6,7Li nuclei are not spinless.
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of α than a corresponding experiment in a low-Z system. How-
ever, as shown in Fig. 4, the nuclear structure alone currently
entails an uncertainty of g that is larger than the uncertainty due
to the fine-structure constant, for large Z. Also, the uncertainty
due to higher-order unknown two-loop binding corrections cur-
rently represents an obstacle for an alternative determination of
α from a g factor measurement at high Z.

Reversing the argument, one may point out that, provided
the two-loop uncertainty of the theoretical prediction for large
Z can be reduced substantially, one may infer the nuclear ra-
dius from the measurement of the g factor. Again, going one
step further and assuming that the nuclear radius is accurately
known from other measurements, e.g., Lamb shift experiments
or g factor measurements in lithiumlike systems, one may even-
tually hope to infer the fine-structure constant from a high-Z
measurement. This endeavour can thus be interpreted as a rather
difficult combined effort of theory and experiment, with results
not to be expected in the immediate future, but providing a very
interesting perspective in the medium and long term. In partic-
ular, this endeavour would depend on a successful evaluation,
nonperturbative in Zα, of all two-loop binding corrections to the
bound-electron g factor.

As Fig. 5 shows, the determination of α based on the bound-
electron g factor currently appears much more promising for
extremely light systems, such as 4He+. The measurement of g

lies in the improvement of the accuracy of the electron mass
by a factor of 4, as compared to the previous value based on
measurements involving protons and electrons in Penning traps
[32].

The expansion of the bound-electron g factor in terms of
the two most important parameters in the non-recoil limit is
discussed in Section 3. These are the loop expansion param-
eter α (the fine-structure constant) and the Coulomb binding
parameter Zα, where Z is the nuclear charge number. Further-
more, in Section 4, we analyze generalized Bethe logarithms,
termed ln k3, which are relevant for binding corrections to the
g factor, in the limit of large principal quantum number (i.e.,
for highly excited Rydberg states). The calculation of the result
ln k3(8S) = 5.022 275 220 (see Table 1), facilitates the analysis
of the asymptotic limit. The discussion is accompanied by a ten-
tative proposal4 for a double-resonance experiment, to probe the
bound-electron g factor for highly excited Rydberg states with
a long lifetime. In Section 5, we discuss prospects for determi-
nations of nuclear properties, and of the fine-structure constant,
based on measurements in various ranges of the nuclear charge
number. An alternative measurement of the fine-structure con-
stant, of comparable accuracy to the free-electron value, could
be accomplished via measurements at low Z, provided the ex-
perimental accuracy of the g factor can be pushed beyond 1 part
in 1011, and provided the electron mass can be determined to
factor, however, would definitely have to be carried out with an
accuracy better than 10−11 in order to match the current accu-
racy for α. Alternatively (see Fig. 4), the planned g factor mea-
surement in 40Ca19+ could potentially lead to a value of α that
matches the accuracy of the free-electron value, provided the
two-loop uncertainty (higher-order binding corrections) can be
reduced and provided the accuracy of the atomic mass determi-
nation can be enhanced beyond 10−10. With current theory, the
accuracy of the determination of α from the 40Ca19+ measure-
ments is limited to an accuracy of about two orders of magnitude
less than the free-electron value.

A final word on the electron mass: For a speculative alter-
native determination of α in a high-Z experiment, the current
accuracy of me, based on the carbon and oxygen measurements
[1,4,24,2,5,6] is sufficient. We recall the values (evaluated using
the most recent theory [6])

me(12C5+) = 0.000 548 579 909 32(29) U, (12)

me(16O7+) = 0.000 548 579 909 60(41) U. (13)

However, if an alternative determination of α via low-Z mea-
surements is pursued in earnest, then it becomes necessary to
improve the value of me beyond the 10−11 threshold.

6. Conclusions

In Section 2, we emphasize the importance of current
high-precision and upcoming ultra-high precision atomic
mass measurements for the determination of fundamental
physical constants, in combination with bound-electron g
factor measurements in hydrogenlike systems. One of the
celebrated achievements connected to g factor measurements
sufficient accuracy (see also Figs. 4 and 5). A priori, combined
ultra-high precision measurements in 4He+ and 10Be3+ appear
to provide for a viable approach, provided the atomic mass mea-
surements of 4He and 10Be can reach comparable accuracy (now,
the experimental accuracy stands at 1.5 parts in 1011 for 4He, see
ref. [12]). The two measurements in He and Be could provide
input data for a coupled system of equations, to be solved for α

and me.
By contrast, considerable further theoretical and experimen-

tal progress (concerning, e.g., nuclear radii) is required before
any such endeavour could be realized in the domain of high
nuclear charges. The prerequisites are outlined in Section 5.
We conclude that even in the absence of this progress, prospec-
tive measurements at higher Z will yield a rather interesting
verification of quantum electrodynamics in the high-field do-
main.
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Appendix A. Nuclear magnetic susceptibility correction

It is well recognized that the nuclear polarizability can shift
atomic energy levels or electronic g factors [30]. Less well
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known is the influence of nuclear magnetic susceptibility βM,
which can be significant for large Z-nuclei. The effective inter-
action Hamiltonian which defines βM is

δH = βM

2
�B2, (14)

where �B is the magnetic field at the nucleus. Here, we estimate
βM on the basis of simple assumptions. In particular, we as-
sume that nucleus is a bound system of nonrelativistic nucleons.
Therefore, the Hamiltonian in the external magnetic field is

H =
Z∑

i=1

(
�π2

i

2 mp
− µp�σi

�B
)

+
N∑

j=1

(
�p2

j

2 mn
− µn �σj

�B
)

+ HI,

(15)

where HI is the interaction Hamiltonian, which we assume to be
�B-indepedent. The proton and neutron masses are denoted by
mp and mn, respectively. The term linear in �B gives the nuclear
magnetic moment. The quadratic term from �π2 = (�p + e �A)2,

δH =
Z∑

i=1

e2 �A2

2 mp
=

Z∑
i=1

e2

8 mp
(�ri × �B)2, (16)

gives the magnetic suseptibility βM (we denote by e the electron
charge, e = −|e|). If we assume that the quadrupole moment

and βM is defined in Eq. (17). As an example, one may con-
sider 40Ca with Z = 20 and a radius of

√
〈�r2〉 = 3.4764(10) fm

[31]. Using values for the fundamental constants as given in
[3], one obtains an estimate for the nuclear susceptibility of
βM = 1.35 · 10−8 m−3

e and δgCa ≈ −1.78 × 10−11 for n = 1,
which is much less than the uncertainty due to higher order two-
loop corrections but important for an accurate understanding of
nuclear contributions to the bound-electron g factor.
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